at://bnewbold.net/app.bsky.feed.post/3jplfn3bygk2m
Back to Collection
Record JSON
{
"$type": "app.bsky.feed.post",
"createdAt": "2023-02-25T19:03:17.811Z",
"embed": {
"$type": "app.bsky.embed.external",
"external": {
"description": "J. Tupper concocted the amazing formula 1/2\u003c|_mod(|_y/(17)_|2^(-17|_x_|-mod(|_y_|,17)),2)_|, where |_x_| is the floor function and mod(b,m) is the mod function, which, when graphed over 0\u003c=x\u003c=105 and n\u003c=y\u003c=n+16 with gives the self-referential \"plot\" illustrated above. Tupper's formula can be generalized to other desired outcomes. For example, L. Garron (pers. comm.) has constructed generalizations for n=13 to 29.",
"thumb": {
"cid": "bafkreieys7hheucigwe2wmczmv7hwp5bbwriwbybhbeoiplrah4723akm4",
"mimeType": "image/jpeg"
},
"title": "Tupper's Self-Referential Formula -- from Wolfram MathWorld",
"uri": "https://mathworld.wolfram.com/TuppersSelf-ReferentialFormula.html"
}
},
"reply": {
"parent": {
"cid": "bafyreihtswcntydtiig4tfdqaa3llaptvt3ngwjnt7xymkhzr2mnl6kubu",
"uri": "at://did:plc:akyopoapqza6xjzthjnandaz/app.bsky.feed.post/3jpjgi45yyc2m"
},
"root": {
"cid": "bafyreidwi6goobuz25ggfa4xpfkmhqftxm2dvbfokut3zyzf6ei3hywk2q",
"uri": "at://did:plc:44ybard66vv44zksje25o7dz/app.bsky.feed.post/3jpjfjyn7l22m"
}
},
"text": "this is a plot of Tupper’s Self-referential formula, for the specific integer which plots the formula itself. The formula gives binary output in a pixel grid on the cartesian plane"
}